合作客戶/
拜耳公司 |
同濟大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 物質(zhì)的形態(tài)之液晶和液體(表面張力)
> 低氣壓下氣泡全生命期特征及引氣混凝土性能提升
> 基于LB膜分析儀研究P507-N235體系萃取稀土過程的溶解行為規(guī)律
> 壓力、溫度、碳原子數(shù)及分子結(jié)構(gòu)對CO2-正構(gòu)烷烴界面張力的影響——實驗部分
> 電子微量天平應(yīng)用實例:研究氮修飾木質(zhì)素基超交聯(lián)聚合物碘吸附機理
> 微量天平應(yīng)用:不同二氧化鈦添加量對高溫尼龍HTN顏色、性能的影響
> ?什么是表面張力?表面張力儀的結(jié)構(gòu)組成、測試過程、校準方法、分類及應(yīng)用
> 濃度、溫度、二價離子、礦化度等對無堿二元復(fù)合體系界面張力的影響
> ?微量化學(xué)天平的發(fā)展歷程及應(yīng)用場景
> 多頻超聲波技術(shù)&人工神經(jīng)網(wǎng)絡(luò)構(gòu)建變壓器油界面張力預(yù)測模型(一)
推薦新聞Info
-
> 混合型生物洗油菌發(fā)酵上清液的表面張力值測定(三)
> 混合型生物洗油菌發(fā)酵上清液的表面張力值測定(二)
> 混合型生物洗油菌發(fā)酵上清液的表面張力值測定(一)
> 表面張力對乙醇液滴沖擊過冷水平壁面的鋪展動力學(xué)行為的影響(三)
> 表面張力對乙醇液滴沖擊過冷水平壁面的鋪展動力學(xué)行為的影響(二)
> 表面張力對乙醇液滴沖擊過冷水平壁面的鋪展動力學(xué)行為的影響(一)
> 接觸角遲滯時氣~液界面張力的溫度敏感性對液滴蒸發(fā)過程的影響——結(jié)果分析、結(jié)論
> 接觸角遲滯時氣~液界面張力的溫度敏感性對液滴蒸發(fā)過程的影響——理論模型及計算方法
> 接觸角遲滯時氣~液界面張力的溫度敏感性對液滴蒸發(fā)過程的影響——引言
> 316L不銹鋼粉末電子束熔化成形的熔合機制的研究(二)
LB 膜分析儀——?簡單Langmuir-Schaefer法制備蛋白質(zhì)納米孔膜
來源: 瀏覽 566 次 發(fā)布時間:2024-05-30
研究簡介:選擇性和滲透率通過界面聚合,制備了頂層薄而致密的復(fù)合膜。雖然優(yōu)化這種膜是很先進的,但在這種密集的選擇層上傳輸需要高跨膜壓力和高能量消耗。在細胞尺度上,生物膜滿足上述許多標準。生物膜將細胞或細胞組分分開,并且主要由厚度小于10nm的致密磷脂雙層組成。磷脂雙層包含膜蛋白,其使得信號傳遞和分子選擇性轉(zhuǎn)運穿過膜。連接膜兩側(cè)的膜蛋白被稱為跨膜蛋白,并且一些跨膜蛋白(TP)形成納米孔。研究人員將鐵蛋白聚合物偶聯(lián)到超薄膜上,并通過蛋白質(zhì)變性形成納米孔。使用天然成孔跨膜蛋白代替鐵蛋白,合成了跨膜蛋白(TP)聚合物綴合物,其通過在Pickering乳液界面處的組裝和隨后的聚合物鏈的UV交聯(lián)轉(zhuǎn)化成穩(wěn)定的膜。提出了一個簡單的方法集成到平面超薄膜的功能性跨膜蛋白(TP),這種策略是基于Langmuir技術(shù)和同雙官能團交聯(lián)劑戊二醛,是一種有效的蛋白質(zhì)交聯(lián)劑和已知的不影響蛋白質(zhì)構(gòu)象在許多情況下。在研究中,F(xiàn)huA分子在朗繆爾槽的空氣-水界面處鋪展。在用Langmuir槽的兩個可移動屏障壓縮時,形成致密的2D膜并通過戊二醛交聯(lián)穩(wěn)定。使用Langmuir-Schaefer方法將單層或多層交聯(lián)的FhuA膜轉(zhuǎn)移到各種基底材料上。
Kibron LB 膜分析儀的的應(yīng)用
用乙醇徹底清潔Langmuir槽,用Millipore純水沖洗,并填充磷酸鹽緩沖液。隨后,將Langmuir槽的屏障完全封閉,吸附的顆粒從空氣-水界面吸走,磷酸鹽緩沖液從屏障后面重新填充。重復(fù)該過程,直到在完全屏障壓縮時測量的清潔空氣-水界面的表面壓力的上升小于或等于0.05mN/m-1在典型的膜制造實驗中,將50μL FhuA溶液(FhuA濃度為6.3×10-6 M的MPD緩沖液中)加入到反應(yīng)器中。平衡2小時后,將朗繆爾槽的屏障設(shè)置為以1 mm/min的速度運動將吸附的FhuA單層壓縮至25 mN/m的表面壓力,在保持表面壓力恒定的同時,將1.76mL戊二醛溶液(50wt%的H2O溶液)加入到反應(yīng)器中。在空氣中干燥之前,將轉(zhuǎn)移的FhuA膜在MPD溶液(5%體積MPD的Millipore純水溶液)中通過浸漬三次來洗滌。平衡2小時后,Langmuir槽的屏障以1 mm min-1的速度運動,將吸附的FhuA單層壓縮到25 mN m-1的表面壓力。在保持表面壓力不變的情況下,將1.76 mL戊二醛溶液(50 wt%in H2O,Sigma-Aldrich,USA)從Langmuir槽屏障后注入磷酸鹽緩沖亞相。交聯(lián)至少進行2小時,直到FhuA膜按照Langmuir-Schaefer方法轉(zhuǎn)移到相應(yīng)的底物上。在空氣中干燥之前,將轉(zhuǎn)移的FhuA膜在MPD溶液(5 vol%MPD在Millipore純凈水中)中浸洗三次。
實驗結(jié)果
介紹了一種制造超薄但機械穩(wěn)定的膜的新方法,該膜包含TP FhuA,其天然形成限定的納米孔。由于其厚度低和本研究中推斷的極高密度的集體對齊蛋白質(zhì),與常規(guī)納濾膜相比,這種膜具有非常高的水滲透性。由兩種不同的FhuA變體制成的膜反映了每種變體的分子性質(zhì),在此關(guān)于離子滲透性進行了證明。我們的膜有潛力作為一個平臺技術(shù),允許定制膜根據(jù)個人的過程要求。膜制造使用了研究良好的Langmuir技術(shù)和一個共同的蛋白質(zhì)交聯(lián)劑,這確保了良好的可擴展性,著眼于未來的應(yīng)用。
圖1、跨膜蛋白FhuA的交聯(lián)2D膜片。a)使用β-桶蛋白FhuA(跨膜蛋白鐵羥酸鹽攝取蛋白組分A)的兩種變體。在FhuA WT中,軟木結(jié)構(gòu)域阻塞大部分孔內(nèi)部,而該軟木結(jié)構(gòu)域被生物技術(shù)去除以形成開孔變體FhuA?CVF電子伏特兩種FhuA變體具有相同的尺寸,并且其特征在于蛋白質(zhì)上部的親水性環(huán)區(qū)和蛋白質(zhì)下部的疏水性跨膜區(qū)。b)應(yīng)用Langmuir技術(shù)形成超大2D FhuA膜片。(i)由于它們的兩親性,當擴散到空氣-水界面時,F(xiàn)huA分子占據(jù)很大程度上直立的取向。(ii)當在朗繆爾槽的屏障之間緊密壓縮并與戊二醛交聯(lián)時,F(xiàn)huA膜片可以通過重復(fù)的水平浸漬層疊在基底的頂部。c)由FhuA WT(左)或FhuA?CVF制成的膜的示意性俯視圖電子伏特d)FhuA膜在水和離子滲透方面進行表征。
圖2、a)在空氣-水界面處的FhuA膜并轉(zhuǎn)移到基底上。(i)吸附,(ii)壓縮,和(iii)在膜制造期間從0.32nmol FhuA WT涂布在磷酸鹽緩沖液頂部測量的谷面積-時間曲線在(ii)和(iii)中,戊二醛的注射用箭頭標記。B)相應(yīng)的BAM成像顯示(i)在高達30 mN/m的表面壓力下均質(zhì)的FhuA膜-1.(ii)表面壓力超逾30mN/m)(i)一個或(ii)兩個FhuA膜片的AFM圖像,所述膜片層疊在硅基底的頂部上(左半部分用注射器尖端刮去)。高度分布屬于圖像中的虛線,并且指示(i)5和(ii)9 nm的膜厚度。d)單個FhuAΔCVF的共聚焦熒光顯微鏡圖像,用熒光標記物標記的硅襯底上的薄膜片e)獨立地覆蓋TEM網(wǎng)格(淺灰色)的結(jié)構(gòu)化碳膜中的孔(深灰色)的FhuA WT膜的HIM圖像。黑色區(qū)域顯示膜中的缺陷。
圖3、空氣-水界面處的FhuA膜BAM(布呂斯特角顯微鏡)圖。(a)在MPD緩沖液中擴散FhuA WT之前和(b)之后的Langmuir槽氣-水界面BAM圖像;和(c-f)在不同表面壓力下的屏障壓縮。涂敷后立即在空氣-水界面上吸附一層致密均勻的FhuA WT膜。FhuA WT膜可以被壓縮到高達25 mN/m的表面壓力,而不會表現(xiàn)出不均勻性。在表面壓力為30 mN/m時,在FhuA WT薄膜中可以看到垂直于壓縮方向的細長裂紋。
圖4、在FhuA單層膜上的AFM測量.a)當(i)未覆蓋和(ii)覆蓋有FhuA膜時在其中心具有單個孔的氮化硅膜窗口的示意圖.(iii)在PeakForce QNM模式下AFM成像期間FhuA膜涂覆的氮化硅膜窗口的橫截面(b-d)當(b)孔未被FhuA膜覆蓋,(c)孔被破裂的FhuAΔCVF膜覆蓋時,氮化硅膜窗口中的孔的AFM高度圖像膜,和(d)孔被一個完整的FhuAΔCVFtev膜層覆蓋(d)和(e)中的高度和變形圖像是同時獲得的,并且所有圖像都是在水中測量的。(d)和(e)中的高度和變形曲線分別屬于圖像中的虛線。
圖5、通過FhuA膜的水和離子滲透。a)覆蓋有氮化硅膜窗口的充水容器的示意圖,其用于測量FhuA WT膜的水滲透。由從杯內(nèi)到杯外的水蒸氣壓差驅(qū)動(pi-p0)(a)中所示的杯子的照片。c)FhuA WT膜的水滲透性為3.87×104 mol Pa-1 m?2 s-1(空參考25.13×104 mol Pa-1 m?2 s-1誤差條表示至少三個樣品的平均值的標準誤差。d)用于測量FhuA膜的離子滲透性的實驗裝置的示意圖。離子在電極之間擴散的唯一方式是滲透氮化硅膜窗口中的孔頂部的FhuA膜。e)在磷酸鹽緩沖液(10×10?3 m NaCl,10×10?3 m恒定斜率對應(yīng)于4.0mS(空參比)、3.4mS(FhuA?CVF)、3.4mS(FhuA?CVF)和3.4mS(FhuA?CVF)的電極之間的恒定電導(dǎo).
總結(jié)
通過具有納米孔的膜的過濾通常與高跨膜壓力和高能量消耗有關(guān)。這個問題可以通過減少各自的膜厚度來解決。本研究描述了一種簡單的方法來制備基于蛋白質(zhì)納米孔的超薄膜,該膜具有優(yōu)異的透水性,比同類工業(yè)應(yīng)用膜高出兩個數(shù)量級。此外,結(jié)合封閉或開放的蛋白質(zhì)納米孔可以調(diào)整膜的離子滲透性。為了形成這樣的膜,跨膜蛋白鐵羥酸鹽攝取蛋白組分A(FhuA)或其開孔變體在Langmuir槽的空氣-水界面組裝,壓縮成致密膜,通過戊二醛交聯(lián),并轉(zhuǎn)移到各種支撐材料上。這種方法可以制備具有高密度蛋白質(zhì)納米孔的單層或多層膜。通過原子力顯微鏡(AFM)、氦離子顯微鏡和透射電子顯微鏡可以看到覆蓋直徑達5μm孔的獨立膜。AFM最大推力定量納米力學(xué)性能映射(PeakForce QNM)表明,厚度僅為5 nm的獨立單層膜具有顯著的力學(xué)穩(wěn)定性和彈性性能。這種新型蛋白質(zhì)膜可以為節(jié)能納濾鋪平道路。