合作客戶/
拜耳公司 |
同濟大學 |
聯(lián)合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關新聞Info
-
> 強紫外線輻射對減縮劑抑制水泥石干縮變形效果研究(四)
> 射頻等離子分離提純的高成本高,如何解決
> 水分測定儀-卡氏干燥爐聯(lián)用測定注射用重組人干擾素α2a中水分含量
> 納米活性顆粒表面潤濕性測量方法及具體操作步驟
> 仲醇聚氧乙烯醚硫酸鹽平衡和動態(tài)表面張力及應用性能研究(三)
> 低表面張力、減縮型聚羧酸減水劑制備步驟
> 高鹽油藏下兩性/陰離子表面活性劑協(xié)同獲得油水超低界面張力的方法(三)
> 我國地表水優(yōu)良比例已接近發(fā)達國家水平
> 石油磺酸鹽、聚丙烯酰胺濃度對界面張力的影響
> 合成血液穿透試驗:表面張力受溫度、表面活性劑影響較大
推薦新聞Info
-
> 電弧增材制造過程中熔池的形成與演變受哪些因素影響?
> 高壓CO2對表面活性劑水溶液與原油界面張力、原油乳化的影響——結果與討論、結論
> 高壓CO2對表面活性劑水溶液與原油界面張力、原油乳化的影響——摘要、實驗部分
> 硝化纖維素塑化效果與其表面張力的變化規(guī)律
> pH、溫度、鹽度、碳源對 解烴菌BD-2產(chǎn)生物表面活性劑的影響——討論、結論
> pH、溫度、鹽度、碳源對 解烴菌BD-2產(chǎn)生物表面活性劑的影響——結果與分析
> pH、溫度、鹽度、碳源對 解烴菌BD-2產(chǎn)生物表面活性劑的影響——材料與方法
> pH、溫度、鹽度、碳源對 解烴菌BD-2產(chǎn)生物表面活性劑的影響——摘要、前言
> 嗜熱鏈球菌發(fā)酵乳對全蛋液起泡性、pH、黏度、表面張力的影響(三)
> 嗜熱鏈球菌發(fā)酵乳對全蛋液起泡性、pH、黏度、表面張力的影響(二)
不同溫度下手性離子液體及二元混合物的密度和表面張力(上)
來源:河北科技師范學院學報 瀏覽 247 次 發(fā)布時間:2024-10-29
作為新興的綠色溶劑,離子液體具有一些獨特的性質,例如揮發(fā)性低,熱穩(wěn)定性強,極性可控,以及對無機和有機物質具有良好的溶解性等。因此,其在合成、催化、電化學以及分離工程方面具有巨大的應用潛能。所以,對離子液體的物理化學性質的研究,例如密度,表面張力,粘度,以及溶解性等,就顯得尤為重要。目前,大多數(shù)文獻報道集中于常規(guī)離子液體,而手性離子液體的物化性質研究相對較少。由于手性離子液體同時具有離子液體的性質和手性,可應用于核磁共振(NMR),近紅外(NIR),不對稱合成,聚合反應,以及氣相色譜等。常見的手性離子液體因其陽離子帶有手性基團而具有手性;而對于陰離子具有手性的離子液體,其手性陰離子可以與傳統(tǒng)的陽離子結合,使離子液體本身具有手性。例如,帶有手性陰離子[L-lactate]-陰離子的咪唑類離子液體。
離子液體物理化學性質的研究對離子液體的設計和應用具有重要的指導作用,而對于離子液體與分子溶劑(例如水)的混合物性質研究將會揭示該類液體的新的應用。筆者在不同溫度下測定帶有手性陰離子的純離子液體1-丁基-3-甲基-咪唑乳酸鹽([bmim][L-lactate])及[bmim][L-lactate]+H2O二元混合物的密度和表面張力,并對其體積性質和表面性質進行研究。以期進一步豐富手性離子液體與分子溶劑二元混合物的物理化學性質數(shù)據(jù),為其應用提供更多的理論依據(jù)。
1實驗部分
1.1藥品
手性離子液體[bmim][L-lactate](質量分數(shù)>0.99)購于上海益江化學有限公司。為了除去樣品中的水分,在使用前先將離子液體在80℃和真空狀態(tài)下烘干至少48 h。樣品的含水量由Karl Fisher滴定測得,其質量分數(shù)<0.000 2。
1.2離子液體密度的測定
樣品由Mettler AX-205天平稱量(METTLER TOLEDO,上海),質量精度為1×10-4。為了防止樣品吸水,在N2保護下采用Anton-Paar DMA4 500密度計測量樣品密度。測定的溫度范圍為293.15~343.15 K。密度測量精度為±0.000 2 g/cm3,測量溫度精度為±0.01 K。測量儀器使用二次蒸餾水校準,取3次重復性實驗結果的平均值作為結果。
1.3離子液體表面張力的測定
表面張力的測量采用白金板法,應用DCAT21(Dataphysics,Germany)表面張力儀進行測定。測定的溫度范圍為293.15~343.15 K。為了防止液體表面污染和吸水,表面張力的測量在N2保護下進行。樣品放置于體積為40 cm3密閉的容器中進行測量,溫度精度為±0.02 K。在進行測量前,白金板和容器在硝酸溶液中浸泡數(shù)小時后使用蒸餾水沖洗,燒干,再次用蒸餾水沖洗后進行干燥。取5次實驗的平均值作為結果,精度為±0.15 mN/m。
2結果與分析
2.1[bm im][L-lactate]的體積性質
在293.15~343.15 K溫度范圍內,實驗測得的離子液體[bmim][L-lactate]的密度隨著溫度的升高而減小(圖1)。根據(jù)不同溫度下的密度,可以得到[bmim][L-lactate]的熱膨脹系數(shù)。實驗測得的lnρ對T繪于圖1,并對其進行了線性擬合,得到經(jīng)驗公式:
式中ρ為離子液體密度(單位:g·cm3),T為液體溫度(單位:K),相關系數(shù)為0.999 7。離子液體的熱膨脹系數(shù)通過下式獲得:
式中α為熱膨脹系數(shù)(單位:K-1),V為離子液體體積(單位:cm3),ρ為離子液體密度(單位:g·cm-3),T為離子液體溫度(單位:K)。由擬合曲線得到[bmim][L-lactate]的熱膨脹系數(shù)為8.31×10-4K-1,該值大于[emim][L-lactate]的熱膨脹系數(shù)(8.0×10-4K-1)。
根據(jù)實驗測得的密度,可由下試計算出離子液體的分子體積:
式中Vm為離子液體的分子體積(單位:nm3),M為[bmim][L-lactate]的摩爾質量,228.29 g·mol-1;N為阿伏伽德羅常數(shù)。在298.15 K,計算得到[bmim][L-lactate]的分子體積為0.341 2 nm3。
根據(jù)Glasser的理論,熵可由分子體積計算得到:
式中So(298)為298 K下離子液體的標準熵(單位:J·(mol·K)-1),298.15 K時,[bmim][L-lactate]的標準熵為454.8 J·(mol·K)-1。
晶格能(UPOT)可以反映出離子液體陰陽離子間的相互作用,而根據(jù)密度可以對晶格能進行估算,然后可以進一步計算熱組成。根據(jù)Glasser提出的理論,晶格能可由下式計算得到:
式中UPOT為晶格能(單位:kJ·mol-1),ρ為離子液體密度(單位:g·cm-3),M為[bmim][L-lactate]的摩爾質量,228.29 g·mol-1。計算得到的離子液體[bmim][L-lactate]的晶格能為439.6 kJ·mol-1,比[emim][L-lactate]的晶格能小(457.7 kJ·mol-1)。這說明[bmim][L-lactate]要比[emim][L-lactate]陰陽離子間的相互作用弱。