合作客戶/
拜耳公司 |
同濟大學(xué) |
聯(lián)合大學(xué) |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關(guān)新聞Info
-
> 磁化水表面張力是多少
> 電場強度大小對表面張力、液滴鋪展變形運動的影響
> 礦化度對油水兩相混合體系界面張力作用規(guī)律
> 乙醇胺與勝坨油田坨28區(qū)塊原油5類活性組分模擬油的動態(tài)界面張力(一)
> 長鏈酰胺甜菜堿與芥酸鈉復(fù)配表觀黏度與降低界(表)面張力等性能評價
> 表面張力儀在表面活性劑中的應(yīng)用
> DHSO、AGE、TMHC構(gòu)建陽離子有機硅表面活性劑DAT防水鎖性能(二)
> 瀝青質(zhì)及其亞組分與烷基苯磺酸鈉水溶液在降低IFT中的協(xié)同機理(二)
> 表面張力測量儀的定義、分類及特點
> 為何礦泉水中的表面張力會比純凈水更大?
推薦新聞Info
-
> 電弧增材制造過程中熔池的形成與演變受哪些因素影響?
> 高壓CO2對表面活性劑水溶液與原油界面張力、原油乳化的影響——結(jié)果與討論、結(jié)論
> 高壓CO2對表面活性劑水溶液與原油界面張力、原油乳化的影響——摘要、實驗部分
> 硝化纖維素塑化效果與其表面張力的變化規(guī)律
> pH、溫度、鹽度、碳源對 解烴菌BD-2產(chǎn)生物表面活性劑的影響——討論、結(jié)論
> pH、溫度、鹽度、碳源對 解烴菌BD-2產(chǎn)生物表面活性劑的影響——結(jié)果與分析
> pH、溫度、鹽度、碳源對 解烴菌BD-2產(chǎn)生物表面活性劑的影響——材料與方法
> pH、溫度、鹽度、碳源對 解烴菌BD-2產(chǎn)生物表面活性劑的影響——摘要、前言
> 嗜熱鏈球菌發(fā)酵乳對全蛋液起泡性、pH、黏度、表面張力的影響(三)
> 嗜熱鏈球菌發(fā)酵乳對全蛋液起泡性、pH、黏度、表面張力的影響(二)
油脂不飽和度對于蛋白質(zhì)界面特性與乳液穩(wěn)定性的影響
來源:國家肉品中心 瀏覽 414 次 發(fā)布時間:2024-09-13
脂肪替代類乳化肉制品近年來受到廣泛關(guān)注。在這類產(chǎn)品中,富含不飽和脂肪酸的植物油脂以預(yù)乳液的形式,部分或全部代替富含飽和脂肪酸的動物脂肪,以滿足消費者對于健康飲食的需求。但是,不同油脂的不飽和度差異會影響乳液穩(wěn)定性,進而影響乳化肉制品的加工特性與感官品質(zhì)。雖然早在1971年便有研究學(xué)者對油脂不飽和度影響乳液穩(wěn)定性的規(guī)律進行了探究,該科學(xué)問題如今仍處于爭論之中。早期研究認為高不飽和度油脂有利于減小乳滴粒徑,促進形成均一、穩(wěn)定的乳液。
近年來部分研究提出了截然相反的結(jié)論。這歸因于油脂不飽和度影響乳液穩(wěn)定性的界面機制仍未得到深入揭示。因此,闡明油脂不飽和度調(diào)控蛋白質(zhì)乳化劑界面行為的規(guī)律對于分析油脂不飽和度與乳液穩(wěn)定性間的關(guān)系,進而改善脂肪替代類乳化肉制品品質(zhì)至關(guān)重要。
本研究系統(tǒng)探討了油脂不飽和度對于蛋白質(zhì)界面特性(界面構(gòu)象轉(zhuǎn)變、吸附動力學(xué)、界面流變特性、界面層厚度)與乳液穩(wěn)定性的影響。油酸、亞麻酸分別與十二烷混合,以調(diào)控極性一致,制備模型油脂;三種類型的蛋白質(zhì)(纖維狀:肌原纖維蛋白,MP;球狀:乳清蛋白,WP;無規(guī)卷曲狀:酪蛋白酸鈉,SC)被選作為模型乳化劑。研究發(fā)現(xiàn),蛋白質(zhì)向高不飽和度油-水界面處擴散較慢,導(dǎo)致界面壓力較低。這造成高不飽和度油脂乳液初始粒徑較大。但是,蛋白質(zhì)在高不飽和度界面上解折疊程度較大,因此滲透和重排速率更高。這促進形成了更堅硬、更厚的界面膜,從而賦予高不飽和度油脂乳液更佳的短期貯藏穩(wěn)定性。另一方面,高不飽和度界面上更堅硬的界面層在大振幅應(yīng)變下易發(fā)生應(yīng)力屈服,從而導(dǎo)致乳液長期穩(wěn)定性下降。
研究成果
圖1.模型油脂的篩選:(a)油酸/亞油酸/亞麻酸與十二烷不同體積比例復(fù)配后的油-水界面張力;(b)最終篩選得到的兩種模型油相的界面張力(DD OA和DD LNA);(c)相同體積下,DD OA與DD LNA分子內(nèi)的碳-碳雙鍵比例
圖2.(a)MP,(b)WP和(c)SC在不同飽和度界面上吸附時的界面壓力。*p<0.05,**p<0.01,***p<0.001,ns無顯著差異
圖3.(a-b)油脂不飽和度影響蛋白質(zhì)界面吸附動力學(xué)的機制示意圖;界面(c)MP,(d)WP和(e)SC的歸一化前表面熒光光譜。*p<0.05,**p<0.01,***p<0.001
圖4.線性粘彈區(qū)域內(nèi)(振幅10%),不同飽和度界面上(a)MP,(b)WP和(c)SC界面膜的彈性模量;(d)MP,(e)WP和(f)SC界面膜的膨脹模量-界面壓力關(guān)系圖。*p<0.05,**p<0.01,***p<0.001
圖5.非線性粘彈區(qū)域內(nèi)(振幅30%),不同飽和度界面上(a)MP,(b)WP和(c)SC界面膜的利薩茹圖像;通過GSD算法得到的(d)MP,(e)WP和(f)SC利薩茹圖像的τ1,τ2,τ3,τ4分解組分;根據(jù)τ1,τ2,τ3,τ4計算得到的(g1-g4)MP,(h1-h4)WP和(i1-i4)SC的Eτ1L,Eτ1M,Eτ4模量與S-因子。*p<0.05,**p<0.01,***p<0.001
圖6.QCM-D試驗:(a)MP,(b)WP和(c)SC在不同飽和度界面上吸附時的共振頻率遷移(Δf)與能量耗散遷移(ΔD);(d)MP,(e)WP和(f)SC在不同飽和度界面上形成的吸附層厚度
圖7.乳液的形成特性:(a)MP,(e)WP和(i)SC乳液的粒徑分布;(b)MP,(f)WP和(j)SC乳液的D3,2與D4,3;(c-d)MP,(g-h)WP和(k-l)SC乳液的激光共聚焦圖像。*p<0.05,**p<0.01,***p<0.001
結(jié)論
蛋白質(zhì)向高不飽和度界面處擴散更慢,導(dǎo)致該處界面壓力較低。因此,高不飽和度油脂乳液初始粒徑較大。相反,蛋白質(zhì)在高不飽和度界面上滲透、重排更快,這是因為蛋白質(zhì)在該處解折疊程度增加,暴露出更多疏水基團;這進一步促進界面蛋白的橫向互作和3D自組裝,形成彈性更高、厚度更大的界面膜;此外,GSD分析證實在高不飽和度界面上,蛋白質(zhì)吸附層在大振幅應(yīng)變下更加堅硬。因此,高不飽和度油脂乳液的短期穩(wěn)定性更佳。但是,較大的硬度會降低界面膜的延展性和靈活性,導(dǎo)致應(yīng)力屈服和破裂現(xiàn)象的發(fā)生,使得高不飽和度油脂乳液在長期貯藏過程中較快發(fā)生失穩(wěn)。